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Abstract

This paper discusses the recent development a statistical approach for the automatic identification
of anomalous network activity that is characteristic of exfiltration events. This approach is based
on the language processing method referred to as latent dirichlet allocation (LDA). Cyber security
experts currently depend heavily on a rule-based framework for initial detection of suspect network
events. The application of the rule set typically results in an extensive list of suspect network events
that are then further explored manually for suspicious activity. The ability to identify anomalous
network events is heavily dependent on the experience of the security personnel wading through the
network log. Limitations of this approach are clear: rule-based systems only apply to exfiltration
behavior that has previously been observed, and experienced cyber security personnel are rare
commodities. Since the new methodology is not a discrete rule-based approach, it is more difficult
for an insider to disguise the exfiltration events. A further benefit is that the methodology provides
a risk-based approach that can be implemented in a continuous, dynamic or evolutionary fashion.
This permits suspect network activity to be identified early with a quantifiable risk associated with
decision making when responding to suspicious activity.
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Chapter 1

Background

Information is a collection of data: documents, images, symbols, network files, etc. The field of
information analysis is broadly concerned with the problem of organizing this data to facilitate the
discovery and understanding of the structure associated with the data. When the information is a
collection of documents, the goals are generally to construct a framework to assist in identifying
critical elements or concepts for further action and organize the information in the corpus for
retrieval by users. Bits of information that present a challenge to an organization (i.e., anomalies)
often provide unique opportunities for discovery.

Relatively new to information analysis, the mathematical techniques associated with proba-
bilistic latent semantic analysis are becoming an increasingly powerful analysis suite for orga-
nizing information. This family of methods includes, for example, Pachinko Allocation Models
(PAM) [5] and Latent Dirichlet Allocation (LDA) [2].

1.1 Cyber Security Problem

From an introspective point of view, of particular concern to an organization is the leaking of crit-
ical information via network transfer. Identification of data exfiltration is particularly challenging
since organizations rely on a broad range of network communication methods. It is often not possi-
ble to determine if a leak has even occurred. Exfiltration can take many forms: insider information
transfer, Trojan backdoor traffic, or a system administrator leaving file access unprotected. There
is intense focus by cyber security experts on malicious transfer of information by an insider.

Cyber security experts depend heavily on a rule-based framework for initial detection of sus-
pect network events. The application of the rule set typically results in an extensive list of suspect
network events that are then further explored manually for suspicious activity. The ability to iden-
tify anomalous network events is heavily dependent on the experience of the security personnel
wading through the network log. Limitations of this approach are clear: rule-based systems only
apply to exfiltration behavior that has previously been observed, and experienced cyber security
personnel are rare commodities.

We have developed an alternative approach to automatically identify unusual or anomalous
network traffic generated within an organization. The method involves the analysis of external
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network header information through a fast LDA algorithm. Unusual patterns in network events are
successively identified and filtered. The result is a smaller, more manageable set of events that can
be further resolved by cyber security staff.

Since the new methodology is not a discrete, rule-based approach, it is more difficult for an
insider to disguise the exfiltration events. A further benefit is that the methodology provides a
risk-based approach that can be implemented in a continuous, dynamic or evolutionary fashion.
This permits suspect network activity to be identified early with a quantifiable risk associated with
decision making.

Following a brief review of notation, the fundamental statistical concepts associated with Latent
Dirichlet Allocation (LDA) will be briefly introduced. Following that will be a brief introduction
to the various information measures used in the analysis. Finally, the structure of the network data
to be analyzed will be introduced, and the results of the analysis will be summarized.

1.2 Notation

• i = 1, . . . ,M = number of documents

• j = 1, . . . ,Ni = number of words in document i

• k = 1, . . . ,T = number of topics

• W= {w1,w2, . . . ,wM} = set of all words (∑wM =V = vocabulary)

• Z= {z1,z2, . . . ,zT} = set of all topics

• φk = probability density function of words in a topic k, e.g. φ1 = {φ11, . . . ,φ1T}

• θi = probability density function of topics in document i, e.g. θ1 = {θ11, . . . ,θ1T}

• Θ = {θ1, . . . ,θM}

• wi j = word j in document i

• zi j = topic for word j in document i

10



Chapter 2

Approach

2.1 Latent Dirichlet Allocation

Fundamental to our analysis are the concepts associated with natural language processing. A com-
mon approach in text analysis is Latent Semantic Analysis (LSA) [3]. LSA is a popular geometric
method for characterizing the relationships between documents and the words within the docu-
ments. A document is considered to be composed of a collection of words: a bag of words, where
word order or grammar are not considered important. Attempts to statistically interpret results
from LSA have been misleading. Overlaying a statistical framework on LSA relies on the unreal-
istic assumption that the relationship between documents and words is a Gaussian random process;
contrary to what has been observed.

However, as noted by Hofmann [4], if we examine the bag of words assumption closer, a
possible probability structure is implied. de Finetti’s Theorem states that an exchangeable sequence
of random variables is a mixture of independent and identically distributed random variables.

A finite set of random variables is said to be exchangeable if the joint distribution is invariant to
permutation, e.g. p(z1,z2, . . . ,zT ) = p(zT ,z1, . . . ,z2). Exchangeable observations are independent
conditioned on some non-observable (latent) random variable.

The impact of exchangeability is subtle but to get an appreciation of the importance: frequen-
tists assume that observations are independent and identically distributed while Bayesians assume
that the observations are exchangeable. Note that the bag of words assumption is still applicable.
The assumption of de Finettis Theorem allows the use of generative models for describing how
documents can be constructed and provides additional insight into the data. Order is still not im-
portant but the resulting probability structure allows for consideration of the context in which a
word is used. An important possibility in natural language analysis.

The assumption of de Finetti’s Theorem allows the use of generative models for describing
how documents can be constructed:

• Select document di with probability p(di)

– for each document, pick a topic zk with probability p(zk|di,θ)

– select a word w j from topic zk with probability p(w j|zk,φ)

11
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Figure 2.1. Bag of Words and the Generative Process

– the result is a document and word pair: (d,w)

• Repeat for all words in all documents

The generative process for text analysis, first suggested by Hofmann [4], is depicted in Fig-
ure 2.1. Selection of words from the various bags are based on some implied probabilistic mixture
of topics and the likelihood of words being chosen is conditioned on the Topic Bag selected. Our
goal, however, is depicted in Figure 2.2. We are provided a corpus of documents and we wish to
characterize the mixture of topics associated with each document and also characterize the distri-
bution of words in the various Topic Bags.

If we assume a generative process for documents, then our analysis is characterized by a hierar-
chical Bayesian structure (Figure 2.3) to estimate the relationships between documents and topics,
and between topics and words given a corpus D = (d,w) . The goal then is, given the values of
(d,w), to evaluate the conditional distributions:

• the word distribution p(w j|zk) = φ jk for each topic k and,

• The topic distribution p(zk|di) = θki for each document i

If we further assume particular distributions: zk|θ ∼Multi(θ), w j|φ ∼Multi(φ), θ ∼ Dir(α),
and φ ∼Dir(β ), then we have Latent Dirichlet Allocation (LDA). A variety of methods have been
proposed for estimating the free parameters Θ and Φ; our choice is Gibbs sampling since it is
stable, relatively fast, and resistant to local minima. The hyperparameters α and β can be vector
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Figure 2.2. The Probabilistic Process

valued, but for this discussion we will assume symmetric Dirichlet distributions, i.e. α = ∑k αk/T
and β = ∑ j β j/V will be single valued.

As a side note, the runtime complexity of the Gibbs sampler is O(MT L) where M is the number
of documents, T is the number of topics, and L is the average number of words in a document.

It is possible to generate a pseudo-corpus of documents. Define a Φ =
[
φ jk
]

T×V matrix of
word parameters such that φ jk = p(w j|zk) is a multinomial distribution describing the probability
that word j is associated with topic k. Define a Θ =

[
θ jk
]

M×T matrix of topic variables such that
θ jk|αk is a random variable characterizing that probability that topic k is associated with document
j conditioned on the T-length vector of parameters αk. T is the presumed number of topics fixed
at the start of the analysis, Θ and Φ are estimated during the course of the statistical analysis.

• choose length of document i, Ni ∼ Poisson(η)

• Choose topic probability density function for document, Θ = (θ1, . . . ,θk)∼ Dirichlet(α)

• For each of the N words

– choose the topic distribution k for each word: zk ∼Multi(Θ;1)

– choose word w j ∼ p(w j|zk,β ) where β jk = p(w j|zk)

p(w,z,Θ|α,β ) = p(Θ|α)
N

∏
n=1

p(zk|Θ)p(w j|zk,β ) (2.1)
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p(w|α,β ) =
∫

Θ

p(Θ|α)
N

∏
n=1

T

∑
zk=1

p(zk|Θ)p(w j|zk,β )dΘ (2.2)

p(d|α,β ) =
M

∏
i=1

p(w|α,β ) (2.3)

(major subscripts have been removed to avoid confusion)

2.2 Document Similarity Measures

Current topic analysis methods generally focus on characterizing the similarity between documents
by estimating the similarity between the topics contained in the documents. The general approach
involves comparing the similarity of their topic distributions θr and θs. For this reason the Θ

matrix is a key element in measuring similarity. Figure 2.4 depicts a geometric interpretation of Θ.
Each document, di, resides on a convex hull where the location indicates the probability mixture
of topics within that document p(zk|di). The documents are constrained by ∑

T
k p(zk|di) = 1. The

similarity between the documents can be characterized using one of a number of measures. Each
of the following were explored for possible application to our particular problem.

Kullback-Leibler Common similarity measure for probability distributions is the Kullback-Leibler
divergence measure:

D(θr,θs) =
T

∑
k=1

θr log2
θr

θs
(2.4)
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KL is asymmetric and a symmetric alternative is:

KLs(θr,θs) =
1
2
[D(θr,θs)+D(θs,θr)] (2.5)

Jensen-Shannon A closely related similarity measure is the Jensen-Shannon divergence measure:

DJS(θr,θs) = KLs(θr,θq) =
1
2
[
D(θr,θq)+D(θs,θq)

]
(2.6)

where:
θq = (θr +θs)/2 (2.7)

The Jensen-Shannon divergence is equal to 1/2 the Jeffrey Divergence.

Meila Divergence Meila [6] proposed a similarity measure between document clusters based on
information theory. Define the entropy of a document cluster r:

Hr =−
K

∑
k=1

θrk log2 θrk (2.8)

and:
E [θr] = ∑

m
θrm/M (2.9)

E [θrs] = ∑
m

θrmθsm/M (2.10)

I(r,s) =
J

∑
j=1

T

∑
k=1

E
[
θ jk
]

log2

[
E
[
θ jk
]

(E
[
θ j
]
)(E [θk])

]
(2.11)

then:
Dr,s = Hr +Hs−2I(r,s) (2.12)

Hellinger Distance Hellinger Distance is a measure of the distance between populations with
multivariate distributions having probability density functions r and s. The distance is given
by
√

2(1− p) where:

p =
∫

∞

−∞

· · ·
∫

∞

−∞

r(θr)s(θs)dθrdθs (2.13)

Blie [1] suggests the following form of the Hellinger distance as a measure of the similarity
between documents i, j :

Di j = E

[
K

∑
k=1

(√
θik−

√
θ jk

)2
|wi,w j

]
(2.14)

Di j =
T

∑
k=1

(√
θik−

√
θ jk

)2
/T (2.15)
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Chapter 3

Exfiltration Detection

The level of cyber attack is becoming increasingly more sophisticated and targeted. The attacks are
also becoming more surreptitious and persistent. There has been a movement away from individual
activity and an increasing number of actions by organized criminal syndicates and nation states.
Our focus here is the transfer of sensitive information from an organization computer system to
an external agency. Apart from an insider using removable media, exfiltration of data typically
involves moving the data from the target system to an external platform through the use of a
network channel.

Figure 3.1 depicts a typical computer network for a research organization. Monitoring for
exfiltration generally occurs at one or more of the DMZ firewalls. The network traffic at a firewall
might be on the order of 100s of thousands network events per minute.

Information exportation may involve an insider or the use of malware to establish a foothold
and then the use of the malware to discover additional targets. Once the target has been breached, it
is possible for the malware to harvest sensitive data using either automated or manual search meth-
ods. Subsequent exfiltration will generally appear benign in a routine log review. Serious review of
network logs can be time consuming and require substantial experience to identify anomalous net-
work events associated with exfiltration. When the rate of network events can exceed a thousand
events per second, the task of identifying suspicious events borders on the impossible.

The approach to reducing the risk of data exfiltration suggested here is to reduce the number
of network events to be reviewed to a manageable level. Contrary to popular opinion, you are not
required to fully understand what normal network behavior is to identify abnormal behavior. You
just need to be able to identify less normal behavior.

Current cyber security methods depend heavily on a long list of discrete rules; and the list is
becoming longer leading to potential conflicts. In addition, current methods rely heavily on years
of experience by cyber security analysts to identify suspicious network events

However, rules only apply to things that you or others have observed; the proposed approach
allows for discovery of unknowns. Gaining experience at identifying the moving target can be
costly in time and money. The proposed approach provides a fast, simple method for performing
an initial filtering of network events.

To demonstrate the proposed approach and avoid issues with privacy and security associated
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Figure 3.1. High Level Network Map
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with actual network traffic, a publicly available data set is used in the analysis. The following
section discusses the source and nature of the data.

3.1 IEEE VAST 2009 Challenge Data

The following problem was posed as part of the IEEE VAST Challenge 2009 [7].

There are problems at the U.S. Embassy in Flovania, a small land-locked country situated
between the nations of Trium to the north and east, Posana to the west, and the Republic of Transak
to the southwest. The network security team recently found irregularities while reviewing Embassy
network traffic logs.

Finding no security issues that could explain the anomalies, they notified the Embassy Coun-
terintelligence Officer. Upon further investigation, the CI officer identified certain espionage You
have been requested to help him with the investigation. The 60 Embassy employees have 24x7
access to the facility, with access to the classified information room.

A months worth of network traffic logs is available. Each employee has been assigned a desktop
computer with a static IP address for use in their daily duties. The network traffic log data consists
of the computer IP address, the employee number of the assigned user, outgoing and incoming
activity from the computer including destination site, payload (request and response data) and
port number.

Table 3.1 is the first few lines from the network traffic log. The complete data set is available
from the IEEE VAST 2009 website [7]. There are a total of 115,414 network events. The data set
is known to contain a set of anomalies, but at the start of the Challenge, the specific exfiltration
events are unknown.

Source IP Access Date/Time Destination IP Socket Req Size Resp Size
37.170.100.38 01/01/08 09:40 AM 37.170.100.200 80 7063 49591
37.170.100.38 01/01/08 09:43 AM 37.157.76.124 80 5171 434285

· · · · · · · · · · · · · · · · · ·

Table 3.1. Sample of Raw Network Event Data

The 151, 414 network events were ’tokenized’ prior to analysis. The tokenized records associ-
ated with Table 3.1 are presented in Table 3.1. This was done primarily to make interpretation of
the results more convenient. Note that all punctuation was removed and the source and destination
IP addresses were specifically identified. The AccessDate/Time was reduced to an hour indicator
(TMx) and Day of the Week (DOWx). The Request Packet Size and the Response Packet Size
were reduced to the scale Extra-Extra Small through Extra-Extra Large (XXS, XS, S, M, L, XL,
XXL); this was done using a simple (and arbitrary) scaling to reduce the dimension of the analysis.
The seven regions were roughly defined by equal frequency counts of observed packet size.

19



Source IP Access Time Destination IP Socket Req Size Resp Size Day of Week
SIP3717010038 TM09 DIP37170100200 SKT80 RQs S RSs S DOW2
SIP3717010038 TM09 DIP3715776124 SKT80 RQs XS RSs M DOW2

· · · · · · · · · · · · · · · · · · · · ·

Table 3.2. Sample of Tokenized Event Data

3.2 Analysis

Each network event was treated as a ’document’ and each element of the network event, e.g. SKT80
was treated as a ’word’. The resulting corpus of 151,414 documents was analyzed using a simple
LDA analysis. Collapsed Gibbs sampling was used under the assumption of T = 50 clusters,
α = 0.01, and β = 0.01.

The number of clusters as well as the initial values for α , and β were explored for sensitivity.
Cluster sizes from 50 to 100 were investigated with no significant impact (other than computer
cycle investment). Values of α,β = 0.01− 0.1 were explored. It was observed that as α became
smaller the anomalous events were easier to identify, but the computational burden became cum-
bersome. However, regardless of the specific value for α , the anomalous events were identified,
either as individuals (low α) or within a relatively small subset, e.g. 600 events, of the original
115,414 network events.

Figure 3.2 depicts plots of the 50 clusters that results from the analysis. Each plot represents
a row of the Θ matrix. The x-axis of each plot is indexed by each of the 151,414 network events.
The y-axis depicts the probability that the network event belongs to that particular cluster. For
examle, if we pick a single x-axis value (a single network event) and sum the associated y-axis
values across the 50 clusters the result is 1.0.

Counting left to right from the top left as Cluster 1 to the bottom right as Cluster 50, we see
that a number of unusual patterns in network traffic appear. The vertical ’stripes’ of, for example,
Cluster 8, and the horizontal ’stripes’ of Cluster 20, are atypical.

As noted in Section 2.2, to identify the anomalous network events various similarity measures
were explored. The measure that provided the highest resolution of events was the Hellinger
Distance. Recall that the distance measures involve a pair-wise comparison with the 115,414
documents; therefore the resulting Hellinger Distance matrix is a 115414 x 115414 matrix. For
presentation purposes the Hellinger matrix is randomly down-sampled and only the down-sample
results are presented in the following discussion. It should be noted that the sampling was biased
to include documents (i.e. network events) that exhibited high Hellinger distance measures.

Figure 3.3 depicts the heat map that results from a Helllinger distance matrix of a random
sample of 1000 random network events. The dendrograms on the edges highlight the clustering
of network events into network usage patterns. The color scheme for the heat map was chosen to
highlight extreme values in the Hellinger matrix.
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Figure 3.2. Resulting 50 Clusters
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Figure 3.4 provides a better perspective on the results. In this case, the Hellinger distance ma-
trix has been down sampled to a 500x500 matrix. It is now possible to identify nineteen anomalous
network events (far left). The associated heat map is presented in Figure 3.5.
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Figure 3.3. Heat Map of Hellinger Matrix - 1000 samples

23



1
0
2
3
3
8
5
5
8
3
0
2
4
4
8
7
3
8
3 2
4
1
5
4
4
7
8
2

1
0
5
2
9
8
4
1
3
4
0
7
5
3
4
5
5
7
9
3
9
6
3
6
7 7 3

1
0
4

1
1
3 4
3
5
6
5
5
2

1
0
6
3
6
4
3
5
9
7
4
5
7
7
2
9
1
8
0
2
2
4
5
5
3
9
5 9
3
2
2
6
3
1
4
2
7
6
6
8 5
7
1
8
7 6

1
1
0
4
4
6
4
9
7
2
3
4
9
1
4
4
6
2
0

1
1
6
8
1
9
3 1
1
1

1
0
0
9
8
1
0
2
8
1
9
1
2
1
8
2
1
1
5

1
1
4
6
9

1
0
9
8
9

1
1
8
7
7
5
0

1
0
7
1
7
5
6
6
2
6
6
1
6
7
8
2
5

1
1
7
5
1
8
8 8
7
0
3
7
9
6
3
8
8
6

1
1
2
6
0

1
1
1

1
1
5
6
1

1
0
3
9
2
9
9
9
4

1
0
8
9
0
2
7

1
0
10
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

0
.0
2
0

0
.0
2
5

0
.0
3
0

0
.0
3
5

Cluster Dendrogram

hclust (*, "complete")

m

H
e
ig
h
t

Figure 3.4. Hellinger Matrix Dendrogram - 500 samples
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Figure 3.5. Heat Map of Hellinger Distance - 500 samples
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Chapter 4

Results

Table 4 lists the nineteen network events associated with the red cells in the middle of Figure 3.3
and the branches on the far left of the dendrogram in Figure 3.4. (Similarly, the blue cells in
Figure 3.5.) The nineteenth entry in the table is highlighted.

SIP3717010031 TM17 DIP10059151133 SKT8080 RQs XXL RSs XS DOW2
SIP3717010031 TM14 DIP10059151133 SKT8080 RQs XXL RSs XS DOW4
SIP3717010016 TM16 DIP10059151133 SKT8080 RQs XXL RSs XS DOW4
SIP3717010016 TM16 DIP10059151133 SKT8080 RQs XXL RSs XS DOW2
SIP3717010031 TM17 DIP10059151133 SKT8080 RQs XXL RSs XS DOW2
SIP3717010041 TM12 DIP10059151133 SKT8080 RQs XXL RSs XS DOW4
SIP3717010018 TM17 DIP10059151133 SKT8080 RQs XXL RSs S DOW4
SIP3717010013 TM08 DIP10059151133 SKT8080 RQs XXL RSs S DOW2
SIP3717010016 TM17 DIP10059151133 SKT8080 RQs XXL RSs XS DOW2
SIP3717010010 TM09 DIP10059151133 SKT8080 RQs XXL RSs XS DOW4
SIP3717010032 TM10 DIP10059151133 SKT8080 RQs XXL RSs XS DOW4
SIP3717010020 TM17 DIP10059151133 SKT8080 RQs XXL RSs S DOW4
SIP3717010056 TM15 DIP10059151133 SKT8080 RQs XXL RSs S DOW2
SIP3717010041 TM16 DIP10059151133 SKT8080 RQs XXL RSs S DOW2
SIP3717010020 TM16 DIP10059151133 SKT8080 RQs XXL RSs S DOW2
SIP3717010052 TM09 DIP10059151133 SKT8080 RQs XXL RSs XS DOW4
SIP3717010015 TM13 DIP10059151133 SKT8080 RQs XXL RSs XS DOW4
SIP371701008 TM16 DIP10059151133 SKT8080 RQs XXL RSs M DOW4
SIP3717010031 TM17 DIP1031082140 SKT8080 RQs XXL RSs XXS DOW4

Table 4.1. Final Set of Suspect Network Events

Since the truth set was available from the VAST Challenge, the actual exfiltration events were
used for validation. (The truth data set was not available at the beginning of the analysis.) The
first eighteen network events identified by the linguistic analysis, and summarized in Table 4.1,
correspond to the exfiltration events provided by the VAST Challenge.

The last entry in the table has some characteristics which sets it apart from other network events
(e.g. use of socket 8080 and a very large requested packet size). However, the event also has some
inconsistent characteristics, notably the destination IP address and the very small response packet
size.
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It should be noted that, while all the exfiltration events were all associated with the destina-
tion IP address of 100.59.151.133, these were not the only network events associated with that
particular IP. In addition, the 8080 socket was used in other transactions.

Values of α,β = 0.01− 0.1 were explored. It was observed that as α became smaller the
anomalous events were easier to identify, but the computational burden became cumbersome.
However, regardless of the specific value for α , the anomalous events were identified, either as
individuals (low α) or within a relatively small subset, e.g. 600 events, of the original 115,414
network events. The suggestion is that values of α be chosen to fit the needs of the organization.
For example, to quickly reduce the number of suspect events down to a workable leve by system
security staff, choose a larger value of α ≈ 0.1 and manually post-process the resulting list of sus-
pect events. If a more specific identification of the events is desired, then use a smaller value of
α ≈ 0.01 and process the network data off-line.

4.1 Discussion

Cyber security experts currently depend heavily on a rule-based framework for initial detection
of suspect network events. The application of the rule set typically results in an extensive list
of suspect network events that are then further explored manually for suspicious activity. The
ability to identify anomalous network events is heavily dependent on the experience of the security
personnel wading through the network log. Limitations of this approach are clear: rule-based
systems only apply to exfiltration behavior that has previously been observed, and experienced
cyber security personnel are rare commodities.

A key point is that the suggested analysis method can be accomplished in conjunction with the
traditional, rule-based approach. Since the new methodology is not a discrete rule-based approach,
it is more difficult for an insider to ’hide in the weeds’ and disguise the exfiltration events. In
addition, the approach can be extended to allow for a formal risk-based approach to attribution.
Resources for investigation of possible exfiltration can be allocated based on the probability that
there was one or more events. The approach is flexible in that in-line processing can be mixed with
an off-line investigation and it is easy to update to account for changes in user network behavior
(e.g. seasonal periodic pattern). Finally, the methodology provides an approach that can be imple-
mented in a continuous, dynamic or evolutionary fashion. This permits suspect network activity to
be identified early.
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